Co-infusion of haematopoietic stem cells from a haplo-identical donor and single unit unrelated cord blood in patients with a high risk of relapse:

A Phase I/II study to assess safety and to investigate the biological mechanism of the anti-tumor response.

No registrations found.

Ethical review Positive opinion

Status Pending

Health condition type -

Study type Interventional

Summary

ID

NL-OMON22000

Source

NTR

Brief title

HaploCord

Health condition

Allogeneic stem cell transplantation Haplo identical Cord blood High risk Hematological disease

Allogene stamceltransplantatie Haplo identiek Navelstreng bloed Hoog risico hematologische ziekte

Sponsors and support

Primary sponsor: UMC Utrecht

Source(s) of monetary or material Support: None

Intervention

Outcome measures

Primary outcome

Safety: Transplantation related (non-relapse) mortality (TRM).

Biology: Investigate the anti-tumor response mechanism from both grafts.

Secondary outcome

- 1. Acute- GVHD (Grade II-IV: Gluckberg Criteria);
- 2. Engraftment: Neutrophils > 500K/uL for 3 consecutive days and Platelet (day 180 > 50 K) engraftment;
- 3. Loss of CB chimerism (<25%) at 6 mths post HSCT;
- 4. Event Free Survival (>6 mths follow up). Event defined as: Death, graft-failure (<25% total donor chimerism) or relapse;
- 5. Non-Relapse Mortality;
- 6. Overall Survival:
- 7. Chronic GVHD: Limited and extensive (Shulman Criteria);
- 8. VOD (Seattle Criteria);
- 9. Mucositis ≥ CTC grade 3.

Study description

Background summary

Although haematopoietic stem cells transplantation (HSCT) has become much safer over the last decade the major limitation remain "transplantation related mortality (TRM; e.g. due to

2 - Co-infusion of haematopoietic stem cells from a haplo-identical donor and single ... 11-05-2025

viral reactivations/disease)" and relapse (in malignancies). Within the group of malignancies there is a subgroup of patients with a "very high risk (of relapse) profile" (e.g. relapse AML, refractory lymphoma, relapse after first allo-HSCT). Although this "very high risk group" may potentially benefit from allo-HSCT with the currently available "standard" transplant protocols the expected survival rates are very low <20%. Cord blood (CB) is emerging as stem cell source for HSCT because it has many advantages above the conventional bone marrow grafts. Disadvantages are however low stem cell count/kg for adults associated with prolonged neutropenia and a slower T cell recovery. T cell depleted haplo-grafts have the advantage of early neutrophil engraftment but are associated with higher rates of secondary graft-failure and poor T-cell reconstitution associated with viral infections. KIR-mismatching in Haplo-grafting is suggested to have anti-leukemic potential.

RATIONALE:

Combining cord blood and readily available haplo-identical family donor-HSCT combines beneficial effects of both allogeneic transplantations strategies, such as the in the long term excellent T-cell recovery after CB HSCT, and the NK-cell mediated anti-tumor activity of CB with the early haplo-mediated neutrophil recovery and the targeted anti-leukemia effect of NK (KIR mismatch) and T-cells after selected haplo-HSCT. We propose therefore that this multimodal treatment protocol may be a treatment option in the selected group of patients with a "very high risk (on relapse) profile". These patients with the very high risk profile may profit for from this double grafting because of:

Multi-modal cellular therapy: Strong early (first 2-4 weeks) NK + T-cells mediated anti-tumor activity from the haplo-graft and NK + T-cellular anti-tumor activity (> 4 weeks) from the CB-graft, without increasing the risk of aGVHD.

OBJECTIVE:

To study the safety of co-infusion of a T-/CD19 B-cell depleted haematopoietic stem cells from haplo-identical donor and a single unit cord blood unit and to investigate the anti-tumor responses from both grafts.

STUDY DESIGN:

Prospective study, Phase I/II trial with an optimal 2-stage design.

Study objective

To study the safety of co-infusion of a T-/CD19 B-cell depleted haematopoietic stem cells from haplo-identical donor and a single unit cord blood unit and to investigate the anti-tumor

3 - Co-infusion of haematopoietic stem cells from a haplo-identical donor and single ... 11-05-2025

responses from both grafts.

Study design

T= 0 is inclusion till 12 months after allogeneic stem cell transplantation.

Intervention

For a group of patients with a very high risk malignancy: Instead of using a single donor, or no transplantation at all, a combination of a cord blood unit and selected cells from a haplo-identical family-donor are infused at the day of transplant. The selection procedure of the haplodonor allows mismatch NK-cells and T-cells in the graft for extra anti-tumor effect.

Contacts

Public

UMCU, Dept. of Hematology

B02.226

Heidelberglaan 100

J.H.E. Kuball

Utrecht 3544 MB

The Netherlands

Scientific

UMCU, Dept. of Hematology

B02.226

Heidelberglaan 100

J.H.E. Kuball

Utrecht 3544 MB

The Netherlands

Eligibility criteria

Inclusion criteria

- 1. Patients with either:
- A. No standard HSCT protocol available and any of the following malignancies: NHL or HD (refractory, \geq 2CR); relapse AML/refractory AML, MDS, SAA, ALL \geq CR2;
- B. Relapse after first allo-HSCT with either SIB or MUD/UCB donor;
 - 4 Co-infusion of haematopoietic stem cells from a haplo-identical donor and single ... 11-05-2025

- C. With a leukemia/lymphoma indication, qualifying for HSCT but without donor available according to ongoing, open study protocols no fully matched family donor or matched (9-10/10) unrelated donor available and / or no single or double unit cord blood available with sufficient cell numbers according to ongoing, open study protocols.
- 2. With having a single matching (\geq 4/6) umbilical CB unit available with total NC count > 1,5 E7/kg;
- 3. Lansky / Karnofsky > 40;
- 4. Age $18-65 * (*= age \le 65 and 364 days);$
- 5. Signed Informed Consent.

Exclusion criteria

- 1. Creatinine clearance < 40 ml/min;
- 2. Cardiac dysfunction (SF < 30%) (Ejection fraction < 45%), unstable angina, or unstable cardiac arrhythmias;
- 3. Pulmonary function test VC, FEV1 and/ or DOC < 50%.

Study design

Design

Study type: Interventional

Intervention model: Parallel

Allocation: Non controlled trial

Masking: Open (masking not used)

Control: N/A, unknown

Recruitment

NL

Recruitment status: Pending

Start date (anticipated): 01-11-2011

Enrollment: 37

Ethics review

Positive opinion

Date: 24-09-2011

Application type: First submission

Study registrations

Followed up by the following (possibly more current) registration

No registrations found.

Other (possibly less up-to-date) registrations in this register

No registrations found.

In other registers

Register ID

NTR-new NL2932 NTR-old NTR3079

Other METC UMCU: 11-313

ISRCTN wordt niet meer aangevraagd.

Study results

Summary results

N/A